Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Saida Tayibi

Mohammed VI Polytechnic University, Morocco

Title: Production of activated biochar from Moroccan macro-algae residues

Biography

Biography: Saida Tayibi

Abstract

Sustainable conversion methods of organic industrial residues for producing new low cost activated/unactivated biochar, which have received more attention in recent years. Those processes and conversion methods were not only used for producing biochars but also, due to their huge positive benefits on environment protection and remediation, could contribute to minimize the number of industrial residues. Slow pyrolysis, which is one of the most conventional types of pyrolysis that has been used for thousands of years primarily for the biochar production, represents an efficient solution to convert these residues to valued bio-products. In the remediation field, activated biochars produced from organic waste have proved the ability to remove many kinds of micropollutants and they showed good results by comparing to commercial activated charcoal. In this study, the production of activated biochars was carried out using a one-pot activation/pyrolysis method with different type of chemical agents and pyrolyzed at 2 different temperatures. The solutions of chemical agents were proceeded on raw macroalgae residue using a simple spry system, unlike activation baths that require large volumes of chemical solutions. All the unactivated/activated biochars were analyzed and characterized by different methods and analysis technics (CHNS, HPLC, FTIR, SEM, EDS, zeta potential  After that adsorption experiments using methylene blue as micropollutants in aqueous medium were realized to evaluate the removal efficiencies of produced biochars. The results showed that biochars activated by alkaline agents gave high removal efficiencies: they range between 87 to 91.47% compared to 97.78% with commercial activated charcoal.